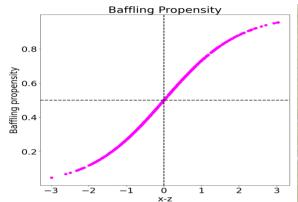


A Tree Cricket's Tale: Modeling the Evolution of ARTs Using a Continuous Trait-Based Approach



C L Srinivas ¹ Dr. Colin Kremer ² Dr. Rittik Deb ¹

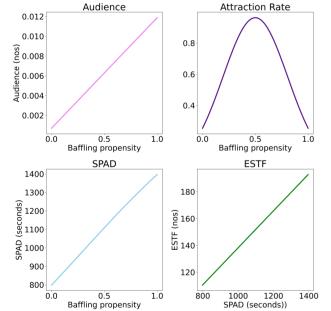
¹National Institute of Science Education and Research, Bhubaneswar ²University of Connecticut, Storrs, USA

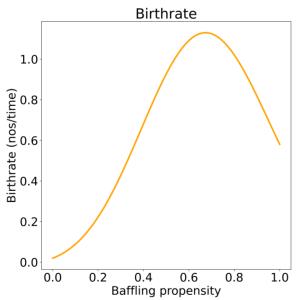
Introduction

Males of the tree cricket species *Oecanthus henryi* produce acoustic mating signals in the form of calls produced by stridulation. Their female counterparts respond to this by performing phonotaxis [1]. Previous work on this model system shows that females preferentially mate for longer duration with louder callers [2]. Interestingly, the males of *Oecanthus henryi* and many other tree cricket species are known to engage in a tool use behavior termed "baffling" in which they call from within self-made holes in leaves. Baffling is known to increase the call SPL by around 15dB, essentially allowing the male to appear more attractive and reach a wider audience. We want to look at the evolution of this behavior using a continuous, trait-based approach [3, 4]. We hypothesize the existence of an intrinsic "baffling threshold (x)" for *O.henryi* males such that baffling propensity is a function of this intrinsic threshold and the non baffling SPL (z).

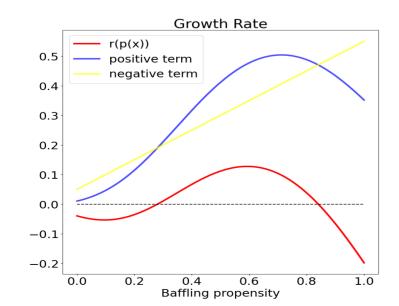
Theoretical framework

The Euler-Lotka Equation

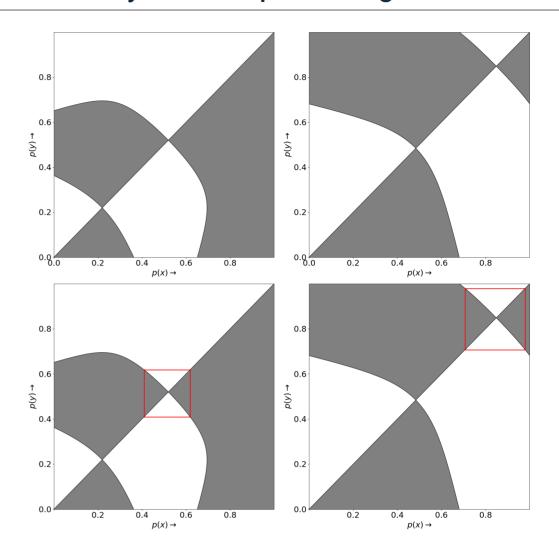

$$1 = \int_0^t e^{-ra} l_a b_a \, da$$


Where b_a and l_a denote the age dependent birthrate and survivorship respectively. Assuming an exponential decay for the survivorship function with the decay rate being a function of baffling propensity, we have;

$$r(p(x)) = -d(p(x)) + \frac{1}{\alpha}W\left(\alpha b(p(x))e^{\alpha(d(p(x))-\bar{d})}\right)$$

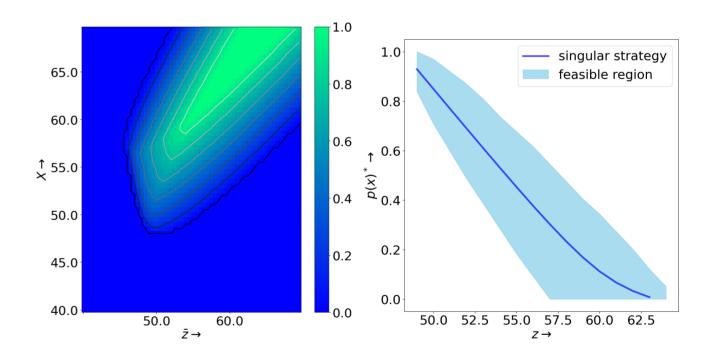

where p(x) denotes the baffling propensity [5].

Birthrate as a function of baffling propensity


Growth rate and invasion fitness

Invasion fitness of a rare mutant;

$$s_x(y) = r(p(y)) - r(p(x))$$


Analysis of fixed points using PIPs [6]

At an ESS singular strategy $p(x)^*$;

$$\left. \frac{\partial s_x(y)}{\partial p(y)} \right|_{p(x)=p(x)^*} = 0 \quad \text{and} \quad \left. \frac{\partial^2 s_x(y)}{\partial p(y)^2} \right|_{p(x)=p(x)^*} < 0$$

Feasible regions and singular strategies

Future plans and scope

- 1. Experimentally validate/obtain or parameterize the baffling propensity, mortality, attraction and sperm transfer functions.
- 2. Perform non-linear averaging over the distribution of z values to obtain the average growth rate for a population of males (if not possible, obtain a better approximation).
- 3. Analyze how the evolutionary dynamics changes as we change the class of function describing the mortality rate increment due to baffling.

Glossary

Baffling propensity Baffling threshold Proportion of baffle making events out of total number of calling events The hypothetical SPL value, such that a non-baffling SPL above it predisposes a male to baffle with a probability greater than random chance (0.5)

SPAD ESTF X Spermatophore Attachment Duration
Effective Sperm Transfer Function
SPL value where the Attraction rate peak occurs

References

- T. G. Forrest.
 Acoustic Communication and Baffling Behaviors of Crickets.

 The Florida Entomologist, 65(1):33, March 1982.
- [2] Rittik Deb, Sambita Modak, and Rohini Balakrishnan. Baffling: A condition-dependent alternative mate attraction strategy using self-made tools in tree crickets. Proc. R. Soc. B., 287(1941):20202229, December
- [3] Brian J. McGill and Joel S. Brown. Evolutionary Game Theory and Adaptive Dynamics of Continuous Traits. Annu. Rev. Ecol. Evol. Syst., 38(1):403–435, December
- [4] Christopher A. Klausmeier, Colin T. Kremer, and Thomas Koffel. Trait-Based Ecological and Eco-Evolutionary Theory pages 161–194. Oxford University Press, May 2020.
- [5] Priyanga Amarasekare and Van Savage. A Framework for Elucidating the Temperature Dependence of Fitness. The American Naturalist, 179(2):178–191, February 2012.
- [6] S.A.H. Geritz, É. Kisdi, G. Meszéna, and J.A.J. Metz Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evolutionary Ecology, 12(1):35–57, January 1998.

captchup.github.io Behaviour 2025 IISER Kolkata srinivas.cl@niser.ac.in