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Collective Behavior & Game Theory
C L Srinivas

Abstract

This report summarizes the outdoor observations, discussions,
tutorials, papers, book chapters and other material that I have
read during the course of the internship. Each individual sum-
mary of a paper/book chapter aims to highlight, primarily, the
gist of the paper/chapter, important ideas and aspects that
escaped my comprehension. The consistent theme of all the
papers read was collective animal motion; general overview of
collective systems in the biosphere, models, simulations for col-
lective motion and their analysis. The two book chapters (from
"Game Theory and Animal Behavior" by Lee Alan Dugatkin
and Hudson Kern Reeves) deal with the PS Game and the game
theoretic analysis of the evolution of cooperation.

1 Introduction

Biological systems provide a plethora of opportunities for
theoreticians to model, simulate and analyse complex in-
teractions, or better still, systems with simple local in-
teractions leading to emergent complexity! The theme of
emergent complexity is deeply embedded in living systems,
as far as I can see. A collection of neurons forming intellec-
tually capable networks (brains), gene regulatory networks
making "decisions" (life of the λ phage), quorum sensing
in bacteria (Vibrio cholerae) and collective animal motion
are a few examples. Of these, collective animal motion
is the most easily observable phenomenon that is a day
to day experience for most of us. I think it is fairly jus-
tified to ask the question, how do these animals (birds,
fish, ungulates etc.) move in cohesion without colliding
with conspecifics or external obstacles? Especially when
most of us have a first hand experience of what it feels like
to avoid a collision in rush hour traffic. Akin to mecha-
nisms in modern automobiles like obstacle detection and
cruise control, animals rely on simple rules of thumb that
allow them to exist in extremely compact, cohesive and
mobile spatial structures. Variation in these local rules of
interaction can give rise to variation in group level prop-
erties like polarization (pgroup) and angular momentum
(mgroup). Another question worth asking is, what drives
the formation of collectives in animal systems? Everything
from group selection to selfish interests can be, and have
been used to explain the formation of large herds. We
look at the arguments for and against such rationale and
also a minimalist model for group formation as a means
of cover seeking that does not invoke the concept of group
selection.
The papers summarized here cover some of the details of
such processes, associated models, some mathematical de-
tails and some other interesting properties like collective
memory (hysteresis).
Collective foraging entails complex social scenarios that

are navigated by utilizing strategies that maximise indi-
vidual payoffs. This domain of study is termed social for-
aging theory and one of the relevant games in this regard is
the Producer-Scrounger Game or PS Game. Chapter II in
the book "Game Theory and Animal Behavior" discusses
this game and it’s two variants, the rate maximising PS
game and the shortfall minimising PS game.
The long standing question in the realm of evolution-
ary game theory has been the evolution of cooperation
amongst selfish agents. Chapter III of the book introduces
this concept and provides a gist of the various paths for
the evolution of cooperation in the animal world.

2 Collective behaviour

2.1 General overview

Article: - "The principles of collective animal behaviour"
by Vishwesha Guttal [1]. The article does a splendid job of
drawing fundamental parallels between physical systems
and biological collectives. It also serves to highlight the
abundance of interesting and complex problems that
biological systems offer to researchers with a love for
theory. I especially like the parallels drawn between
physics and ecology. I was interested in modelling animal
behavior (and hence my desire to work with this lab), I
feel as though the ideas presented in that article helped
me to concretely understand how one goes on about this.
Review paper: - "The principles of collective animal
behaviour" by D. J. T. Sumpter [2]. This was a nice
overview of the diverse instances of collective animal
behaviour. From humans clapping in an opera theatre to
ants deciding on a new nesting site. The author explains
how one can distil the complex patterns generated by
collective behaviour into a few fundamental, individual
level rules. This is akin to an algorithm at the individual
level. By identifying these fundamental rules, we can
essentially generalise between different collective systems
that follow similar dynamics. Hence, a bunch of schooling
fish and a crowd of people trying to escape from a
burning building might behave in the same manner at
the collective level (given the fundamental rules are the
same for individuals in both systems) even though as
individuals humans are very different from fish.
Paper: - “Complexity, Pattern, and Evolutionary Trade-
Offs in Animal Aggregation” by Parrish et al. [3] All
animal aggregations may not necessarily be self-organized
or driven by internal factors. External conditions like the
state of the environment resource availability etc. can
drive these processes. The patterns emerging from these
collectives may or may not entail evolutionary benefits
or adaptive value. Many a times, these patterns can
be a mere artifact of the local rules and properties of
individual behavior. Joining a group comes with certain
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trade-offs for the individual. The benefits of reduced
predation (dilution and confusion effect), active retalia-
tion (mobbing), increased awareness (group surveillance),
protection (weaker juveniles protected by stronger adults
by appropriate structuring and spatial distribution of the
group) etc. comes at the cost of un-equitable distribution
of benefits amongst the group members (skewed age wise
spatial distributions in groups discussed above is disad-
vantageous to adults, skewed feeding benefits in groups
where the vanguard individuals have access to greater
resources as compared to the individuals on edge), sub-
optimal group size etc. Given these pros and cons, groups
(of sub-optimal sizes also) exist because at the individual
level, it’s better to be part of a group than be alone.
However, given the un-equitable distribution of benefits
in a group, selfish motives pose a threat to group integrity.

What I did not understand: -

1. What is mean field density of a swarm?

2. What is the diffusion approximation of random mo-
tion?

3. Why repulsion should have a greater non-linear den-
sity dependence than attraction? They are two sides
of the same coin, right? (More attraction = less re-
pulsion and vice-versa)

4. What are Lagrangian equations?

2.2 Models and analysis

Paper: - "Novel Type of Phase Transition in a System
of Self-Driven Particles" by Vicsek et al. [4] The authors
introduce a simple non-equilibrium model with novel
type of dynamics in order to analyze phase transitions
in a system of self-driven particles. In the model, all
the particles are driven with an absolute velocity ν.
The direction of velocity is updated at regular intervals,
such that the new direction is equal to the average
direction (the notion of “average direction” is a bit
ambiguous, but has been clearly defined in the paper)
of all neighbors within a radius r, plus some random
noise. This noise is parameterized by η {the noise term
is chosen with a uniform probability from the interval
(-η/2, η/2)}. All the simulations are conducted in a
2D square of side L. The density of self-propelled parti-
cles is N/L2 = ρ. A kinetic order parameter is defined as,

va =
1

Nv

∣∣∣∣∣
N∑
i=1

vi

∣∣∣∣∣
The authors expect, based on the finite size scaling analy-
sis, that the system will give phase diagrams analogous to
a system of disordered ferromagnets with ηc playing the
role of temperature and ρ playing the role of density of
spins. Analysis shows that,

1. As the noise η decreases, the system transitions from
a disordered phase to a coherent phase with particles
moving in a uniform direction for a fixed density ρ in
varying box sizes.

2. For a constant noise η, with increasing density ρ the
system transitions from a disordered state to an or-
dered state of coherent motion.

What I did not understand: -

1. The scaling analysis part.

2. Thermodynamic limit of the model.

3. Why is it called spontaneous symmetry breaking of
the rotational symmetry? I have intuitive under-
standing, but no concrete knowledge of what is sym-
metry breaking (in case something like that exists).

Paper: - "Geometry for the Selfish Herd" by W. D.
Hamilton [5] unrelated thought: - It would have been an
awesome pun if researchers discovered similar dynamics
in groups of crustaceans and named the paper “Geometry
for the Shell-fish Herd” The paper can be viewed in three
sections:

1. Arguments against gregarious behavior and formation
of collectives being a consequence of group selection,
a.k.a., for the good of the species.

2. Discussion of marginal pruning as a mecha-
nism for preserving or generating gregarious in-
stincts/centripetal tendencies in prey species.

3. Introduction and discussion of a simple geometric
model for explaining the dynamics of a “selfish herd”
of cattle.

1. Arguments against group selection: -

(a) The author first discusses a one-dimensional
prey-predator model. It introduces the concept
of the domain of danger; the area corresponding
to a prey item such that, at every point in that
area, that prey item is the closest one.

(b) Using this concept and a series of logical argu-
ments, the author describes how aggregation in
prey items can be induced by “cover-seeking be-
havior”. This can be seen as the first evidence
to show that one can explain gregarious behav-
ior without having to invoke any notion of group
selection or “working for the good of the species”.

(c) In fact, if anything, such behavior could be detri-
mental to the species as a whole since such ag-
gregations attract predators and offer a buffet of
possible targets.

2. Marginal pruning : -
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(a) There are many examples where marginal prun-
ing (predation from outside the herd causing
members at the periphery to be preferentially
predated) causes gregarious behavior in other-
wise non-gregarious animals.

(b) It is relatively obvious that marginal pruning can
preserve centripetal tendencies, however, it can
be shown that gregarious behavior can develop
even when the predator is present amidst a field
of unsuspecting prey.

3. Geometry for the selfish herd: -
I feel that the idea behind this model can be summa-
rized by the following quote, “If a tiger is chasing a
bunch of men, in order to escape, you don’t have to
be faster than the tiger. You just have to be faster
than the slowest man.”

4. The assumptions for the model are as follows:

(a) Each prey item (cattle) has its corresponding do-
main of danger.

(b) The predator (a lion) will attack/try to capture
the nearest prey item.

(c) The predator’s location is unknown and hence
can be assumed to be anywhere.

5. Given this model it’s easy to see that each prey item
would try to minimize its domain of danger. The
steps one individual must take in order to minimize
its domain of danger are incredibly complex and non-
apparent. This is because the movements of one in-
dividual will/should affect the decisions of the oth-
ers. However, we can make some general observations
about the situation with the information we have:

(a) Movement towards the nearest neighbor does not
guarantee maximum decrease in domain of dan-
ger. It can, in some cases, lead to an increase in
the domain of danger, especially if the nearest
neighbor is an isolated individual.

(b) This tends to happen in cases where the prey
item has a small number of neighbors, i.e., when
the domain of danger is a polygon with a small
number of sides (refer figure ??).

(c) When the individual has a many-sided domain,
movement towards its nearest neighbor is almost
inevitably accompanied by a decrease in the do-
main of danger.

(d) We can conclude, that in general, it is useful for
cows to approach their nearest neighbor. In fact,
such tendencies have been shown in many animal
systems.

6. In real life, the herds observed are much larger than
the herd sizes observed in simulations. The author
postulates that once smaller, primary groups have

formed, secondary condensations can lead to the uni-
fication of these smaller groups based on similar prin-
ciples discussed above. An infinite series of these con-
densations can hence lead to large herds.

Figure 1: Domain of danger of prey items on a 2D plane

What I did not understand:

1. The figure in the paper (refer figure 1) is very difficult
to read, hence some nuances of the model analysis
were difficult to understand.

Paper: - "Collective Memory and Spatial Sorting in An-
imal Groups" by Iain Couzin et al. [6] The authors in-
troduce a simple, yet biologically meaningful model for
collective motion. They do so by incorporating abstrac-
tions of the attraction and repulsion tendencies of animals
into their model. The paper also examines a novel type of
“group memory” or hysteresis that had never before been
explored. The model is as follows:
The group consists of N individuals {i = 1, 2, 3, . . . , N}.
Each individual’s position and orientation are denoted by
the vectors ci and vi respectively. Time is simulated in
discrete steps τ .
There are three spatial zones defined for each individual:

1. zor : Zone of repulsion. This is a spherical volume of
radius rr around the focal individual.

2. zoo: Zone of orientation. This is a spherical shell of
width ∆ro = ro − rr around the focal individual.

3. zoa: Zone of attraction. This is a spherical shell of
width ∆ra = ra − ro around the focal individual.

The direction of the i-th individual at time t+τ is denoted
by di(t+ τ). di(t+ τ) follows the following rules:

1. If the number of neighbors in zor, Nr ̸= 0, then

di(t+ τ) = dr(t+ τ),

where dr is given by,

dr(t+ τ) = −
Nr∑
j ̸=i

rij(t)

|rij(t)|
.

2. If Nr = 0 or if dr is a null vector, then do(t + τ) is
defined as,

do(t+ τ) =

No∑
j=1

vj(t)

|vj(t)|
.
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3. And da(t+ τ) is defined as,

da(t+ τ) =

Na∑
j ̸=i

rij(t)

|rij(t)|
.

4. If Na = 0, then di(t+ τ) = do(t+ τ).

5. If No = 0, then di(t+ τ) = da(t+ τ).

6. If Na and No ̸= 0, then

di(t+ τ) =
1

2
(do(t+ τ) + da(t+ τ)) .

7. In case di(t+τ) is a null vector, or there are no neigh-
bors, then di(t+ τ) = vi.

Some random noise is added to di(t + τ) to simulate the
stochastic effects that decision-making in animals is sub-
jected to. This noise is added by rotating di through an
angle obtained from a spherically wrapped Gaussian dis-
tribution with standard deviation σ.
Following the above rules, each individual updates its
direction by turning at the rate θ. If the angle between
vi(t) and di(t + τ) is less than or equal to the maximum
turning angle θτ , then vi(t+ τ) = di(t+ τ). Else, the in-
dividual turns θτ degrees/rads in the direction of di(t+τ).

Analysis of the model: -

Two global properties are defined for the system for
analysis:

pgroup(t) =
1

N

∣∣∣∣∣
N∑
i=1

vi(t)

∣∣∣∣∣
mgroup(t) =

1

N

N∑
i=1

ric(t)× vi(t),

where
ric = ci − cgroup

cgroup(t) =
1

N

N∑
i=1

ci(t).

The individual in front is defined as the individual with the
greatest minimum distance from the plane perpendicular
to dgroup and passing through cgroup:

dgroup(t) =
1

N

N∑
i=1

vi(t).

Results of Analysis: -
A change in the width of the behavioral zones ∆ro and
∆ra elicits sharp transitions between behavioral states of
the system mentioned below (refer figure 2):

1. Swarm: An aggregate with cohesion but very low po-
larization. Occurs at high values of ∆ra and low val-
ues of ∆ro (virtually zero).

2. Torus: Individuals perpetually rotate around an
empty core. pgroup is small but mgroup is large. Oc-
curs at high values of ∆ra and low values of ∆ro.

3. Dynamic parallel group: Occurs at intermediate val-
ues of ∆ro and intermediate or high values of ∆ra.

4. Highly parallel group: Here pgroup is very high, almost
equal to 1. Occurs at high values of ∆ro.

Figure 2: This figure shows how pgroup and mgroup vary with
different values of ro and ra.

Figure 3: The system showing hysteresis behavior when pgroup

and mgroup were measured as a function of ro.

In the “e” region characterized by low ∆ro and low ∆ra,
the groups have a greater than 50
As group size decreases, torus and dynamic parallel groups
tend to become more restricted in the parameter space.
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The field of perception α also plays a significant role in
determining group dynamics. As α diminishes, torus be-
comes more common. Parallel groups become elongated
along their principal axis as α diminishes. When it reaches
230° group fragmentation becomes common across the en-
tire parameter space.
Turning rate essentially re-scales the parameter space.
ro was increased and decreased back for a system. At each
ro step value, 2000-time steps were simulated. These ro
values were plotted against pgroup and mgroup on the y-
axis. The increasing and decreasing plot lines show signif-
icant differences (refer figure 3), indicating that the pre-
vious history of the group influences transition between
behavioral states (hysteresis).
Individual movement patterns can influence the position
of individuals within the group. Individuals can essentially
change their local position with respect to the group center
(cgroup) even when they have no knowledge of their current
position within the group or of the global group structure.
For example, speed is strongly correlated with being in
front of the group.
Individuals with smaller rr tend to be near the center of
the group. For all parameters, the strength of correlation
tends to increase with an increase in variation among the
individuals.

What I did not understand

1. This was a very easy-to-read (exciting) paper. Cur-
rently, I feel like I could understand all the aspects
of the model and analysis presented here except for
what is a spherically wrapped Gaussian.

Paper: - "Flocks, Herds and Schools: A Distributed Be-
havioral Model" by C. W. Reynolds [7] The paper presents
a model for collective motion in an algorithmic fashion,
emphasizing the lack of requirement of a global control
system for a flock of moving objects (from here onwards,
“boids”). The model presented here is very similar to the
one discussed in the previous paper “Collective Memory
and Spatial Sorting in Animal Groups”. The author’s pri-
mary intention in developing said algorithm for simulating
collective movement of boids, is to make the life of ani-
mators easier. Classical animation relies on the animator
having to define the position of all objects in each frame,
the trick being, that the animator would progressively and
gradually alter the position/shape/lighting of a subset of
those objects, giving the illusion of movement.
This algorithm aims to simulate flock movement by
treating each boid as an independent computational unit
that makes its own local decisions. As a result of each
boid’s local decisions, an emergent flock-like behavior
appears. Hence, animators no longer need to tediously
animate the flight paths of each and every boid in a flock,
rather, the computer takes care of it. All one has to do
now is set a global path or target for the flock (this target
itself can be animated i.e. moved between frames), and
the flock will follow this target in a natural fashion.

Figure 4: Geometric flight

Key Features of the Simulator: -

1. Unlike many particle systems where the particles in-
volved can be approximated as tiny spheres or point
masses, the boids involved here have a definite geom-
etry, local spatial coordinates (implying local coordi-
nate axes x, y, and z) and a local direction or orien-
tation (defined as the direction of the local z axis).

2. Geometric Flight: Unlike in traditional animation,
the path (3D curve) of the object is not defined be-
forehand but rather is incrementally updated using
the local rules/algorithm followed by each boid. Each
boid moves by incremental translations in its local
positive z axis. These increments are intermixed with
steering rotations (pitch and yaw) that align its local
z axis appropriately with respect to the global coor-
dinates (refer figure 4).

3. Banking: During steering, there is a lateral compo-
nent of acceleration. While turning, centrifugal force
and gravity form a diagonal resultant force. Correct
banking aligns the local Y axis with this resultant
force. In the limiting case of infinite velocity, the cen-
trifugal force dominates over gravity and the local Y
axis points at the center of the arc of curvature.

4. Arbitration of Independent Behaviors: There
are three behavioral urges. They are listed below in
the order of decreasing priority:

(a) Collision avoidance: Avoid collision with
nearby flock mates.

(b) Velocity matching: Attempt to match the ve-
locity with nearby flock mates.

(c) Flock centering: Attempt to stay close to
nearby flock mates.

At each time interval, each behavioral urge produces
an acceleration request. This is a 3D vector that is
truncated to unit magnitude or less by the system.
The task of merging, prioritizing, and arbitrating be-
tween the various acceleration requests is performed
by the navigation module. The navigation module
performs what is called prioritized acceleration al-
location, whereby all the acceleration requests are
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Figure 5: Steer to avoid method

considered in priority order (priorities of acceleration
requests follow the priority order of the behavioral
urges that generate them) and added to an accumu-
lator. The magnitudes of the acceleration requests
are added to another accumulator. This process con-
tinues till the sum of the magnitudes of all acceler-
ation requests in the accumulator exceeds the maxi-
mum acceleration value (this is an intrinsic parameter
of the boid). The magnitude of the last acceleration
request is trimmed back to compensate for the excess
accumulated acceleration magnitude. There is a fi-
nite amount of acceleration under the control of the
navigation module; this acceleration is then parceled
out to satisfy the acceleration requests. In emergency
situations, if all available acceleration is used up by
high-priority acceleration requests, some behavioral
urges may remain temporarily unsatisfied.

5. Simulated Perception: The perception model tries
to make available to the behavioral model the same
information that would be available to a real animal
in a flock. The behaviors that are responsible for
the flock model are stated in terms of “nearby flock
mates”. Here the concept of neighborhood is defined
as a spherical volume of sensitivity centered at the
boid’s local origin. The sensitivity is expressed as an
inverse exponential of the distance. Hence, the neigh-
borhood is defined by two parameters, a radius and
an exponent.

6. Scripted Flocking: The migratory urge built into
the boid model allows the animator to control the
flock in time and space. The migratory urge can be
a global direction vector (migratory direction) or a
global position coordinate (target). This target can
itself be animated. The target or global direction pa-
rameter can be passed on to the flock, which can then
be passed on to each individual boid. Each boid then
maintains its own “migratory goal register”.

7. Obstacle Avoidance: The boid uses a steer to
avoid method of obstacle avoidance (refer figure 5).
The steps involved in this are as follows:

(a) The boid considers only objects directly in front
of it. This is accomplished by finding intersec-
tion points of its local positive Z axis with any
obstacle.

(b) Then, working in its local perspective space, it
finds the object’s silhouette edge closest to the
point of eventual impact.

(c) A radial vector is computed that will aim the
boid at a point one body length beyond that
silhouette edge.

What I did not understand

1. How do the boids incorporate the migratory urge?
Does that entail an additional acceleration request at
each time step on top of all the other basic requests?
If this is indeed the case, then is it not sufficient to
pass on the global target/direction to a subset of the
boids, as the others will follow suit anyways? If yes,
is there a threshold number? What is that number?
What all does this threshold depend on?

2. In case of emergencies, do pending acceleration re-
quests affect the subsequent time steps?

3. If acceleration is parceled out to meet several acceler-
ation requests (weighted by their magnitudes), then
is it not functionally similar to the weighted average?

4. What is a phase portrait of a force field?

3 Tutorial

The following topics were covered in the tutorials

(click the icon to view embedded PDF) : -

1. Dynamic Processes

(a) Discrete
(b) Continuous

2. Random Variables

(a) Discrete
(b) Continuous

3. Probability Mass Func-
tion

4. Joint Density Function

5. Conditional Density

6. Marginal Density

7. Expectation

8. Variance

9. Correlation and Coeffi-
cient of Correlation

10. Markov Property

11. Ideal Independent Dis-
tribution (IID)

12. Random Walk

13. Brownian Motion

14. Stochastic Calculus

15. Reimann-Steiltjes and
Stratonovich integrals

16. Stationary Process

17. Autocorrelation

18. Cross-correlation and
Leader-Follower Dy-
namics

19. White Noise

20. Consensus in foraging
ants

21. Marching locusts
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4 Observations

1. Ants: We have observed colonies of weaver ants
around campus. We were lucky enough to observe and
capture images of nest building behavior. Utilizing
the GoPro and a gorilla tripod, we have recorded con-
tinuous video footage ( 40 minutes) of weaver ant traf-
fic from and to their nests. Additionally, we recorded
short video footage of weaver ants transporting food
items such as dead millipedes, insects, and even other
ant species!

2. Bats: We observed and recorded huge groups of bats
flying Westward coherently at dusk ( 6:15-7:00pm).
It remains to be ascertained whether this behavior is
driven by collective instincts or other factors, as the
groups are very widely spread out (low density) and
the individuals do not seem to show any signs of col-
lective motion. Although the group is very polarized
(towards South-West direction).

3. Red Bugs (Cotton Tree Silk Bug?): We found
massive groups of these vibrant red bugs inside the
plant nursery inside campus.

4. Parakeets: We observed and recorded flocks of para-
keets moving to the safety of trees to take shelter for
the night. Large flocks come and perch on trees to
the point where there are more birds on the tree than
leaves.

5. Fish: We observed schooling behavior in what we
think are juvenile fish on our visit to Sanky Tank
Lake. The tiny fish formed a dense school around
what we think were the parent couple. Thanks to
JVH having a pool with a lot of fish in it, we could
observe the dynamic nature of schooling behavior in
the fishes, whereby they form tight, polarized schools
when threatened and disperse once they no longer per-
ceive the threat.

6. Swans: Thanks to their fearless and docile nature, we
could get good videos of groups of swans swimming
in tight formations. We could also notice how the
formations changed from a strict line, to a V shape
and back, etc.

7. Pigeons: We have instances of large groups of pi-
geons ( 20-30) feeding. There seems to be brief inter-
actions of competition, aggression, and territorialism
between the individuals whilst feeding. The collective
aspect of such groups (if any) remains to be investi-
gated.

8. Flies (Nematoceran Flies or Gnats): We have
observed drosophila-like flies (maybe even smaller)
flying in tight ball-like formations, hovering in a fixed
space for a considerable duration. This seems like a
very intriguing case of collective motion.

9. Millipedes: We have observed millipedes around the
campus for about 2 weeks now. They tend to occur
in groups ( about 3-4 individuals/m2), although lone
individuals are also spotted frequently. From obser-
vation, it would seem that the aggregation of these
millipedes is driven by a pursuit for resources, mat-
ing opportunities, and favorable conditions more than
anything else. Unobservable factors like soil condi-
tion, pH, etc. might also affect the millipede distri-
bution. They are relatively immobile for the major
part of their day (aka lazy). They spend most of their
day munching on fallen and rotten fruits, moss, algae,
and probably other vegetation. They seem to avoid
or ignore their conspecifics when encountered. This
is done by either changing their direction of motion
when confronted with a conspecific or alternatively,
climbing over the conspecific so as to get away from
them. There is great polymorphism in the size, shape,
and coloration of the millipedes. We cannot ascertain
whether there are multiple species or whether it is
intraspecific variation.

5 Game Theory

5.1 Game Theory and Social Foraging [8]

The field of "Social Foraging Theory" deals with the
economic modelling of optimal foraging strategies using
game theory in situations where there is frequency de-
pendant payoffs. There can be simple dependence, as in
the Ideal Free Distribution (IFD) n-person, alternative op-
tion game, or compound dependence, as is the case in the
Producer-Scrounger Game (PS Game). Compound depen-
dence refers to the situation where the payoff associated
with a particular strategy depends on the frequency of
players using that particular strategy and also on the fre-
quency of players using alternate strategy.

5.1.1 The Classic Producer-Scrounger Game

Let q be the proportion of producers in a population, so
that the number of scroungers is 1− q. The fitness of each
strategy falls as an inverse function of its frequency (refer
figure 6.

Figure 6: Characteristic fitness functions of a PS game
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Figure 7: Three theoretically possible frequencies of producer
and scrounger alternatives within a group of twelve foragers

In such a scenario, we expect the population to exist in
equilibrium condition (refer figure 7) such that,

W (q∗|P ) = W (q∗|S)

and,
dW (q|P )/dq|q=q∗ < dW (q|S)/dq|q=q∗

5.1.2 Rate Maximizing PS Game

In this game, the hypothesized currency of fitness is the
mean gross energy intake (I) over some time horizon T.
The equilibrium frequency of producers can be found to
be,

a/F + 1/G = q∗

Thus, the equilibrium proportion of producers in a popu-
lation depends on two factors, the group size (1/G) and
the "finders share" (a/F ) (refer figure 8).

Figure 8: Equilibrium proportion of producers q∗ as a function
of 1/G and finders share a/F

5.1.3 Shortfall Minimizing PS Game

In this model, the assumption that fitness increases lin-
early with energy obtained is challenged. Here, the opti-
mality criterion becomes the "probability of an energetic
shortfall". This probability is a function of the physio-
logical minimum energy requirement, energy expenditure

entailed by the foraging strategy, expected energetic payoff
and the variance of this payoff. The total number of food
items procured by a producer follows a "Poisson-binomial"
probability function with mean and variance,

E[Xi(T )] = θcλT

V [Xi(T )] = θcλT (1− θ + θc)

The total number of food items procured by a scrounger
also follows a "Poisson-binomial" function with mean and
variance,

E[Xj(T )] = (1− θ)cGpλT/Gs

V [Xj(T )] = ((1−θ)cGpλT/Gs)(1−(1−θ/Gs)+((1−θ)c/Gs))

where, θ = the probability of a food item within a food
patch being consumed by the producer, (1− θ)/Gs = the
probability of a food item being consumed by a scrounger,
λ = the rate of patch encounter by a producer, c = the
number of food items in each patch. It is interesting to
note that in cases where the minimum energy requirement
R < ⟨E⟩, the strategy with least variation in energy pay-
off is preferred, whereas, when R > ⟨E⟩, the strategy with
greater variance in energetic payoff is preferred. The prob-
ability for energetic shortfall for a producer is denoted by
zp and that for a scrounger is zs such that,

zp = (R− θcλT )/{θcλT (1− θ + θc)}1/2

zs = (R+ ρ− {(1− θ)cGpλT )/Gs}/{V [Xj(T )]}1/2

where ρ = the energetic cost of playing the scrounger strat-
egy.
The effect of rate of patch encounter, future food require-
ment, cost of scrounging ρ, physiological requirement R
and group size on the equilibrium proportion of producers
can be theoretically derived and experimentally tested.

5.2 Game Theory and Cooperation [9]

The chapter deals with the applications of game theory in
behavioral evolution as a tool to explain the emergence of
cooperation amongst a collection of selfish agents (individ-
uals). There are three major ways in which cooperation
might evolve as described in the book:

5.2.1 Reciprocal altruism

The primary game used to explore the emergence of co-
operation through reciprocity is the infamous Prisoners
Dilemma or PD game. Axelrod and Hamilton proved the
evolutionary stability of TFT by proving that for suffi-
ciently high w, also called shadow of the future, neither
ALLD nor ALTDC can invade a population of TFT. The
authors enlist a plethora of papers on PD variants and
their novelties, inspired by Axelrod and Hamilton’s initial
paper.
Examples of cooperation selected by reciprocal altruism:
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1. Egg swapping in hermaphroditic fish:
Hermaphroditic fish engage in pairwise egg and
sperm release. One turn consists of eggs released by
one individual met by sperms from the other and
vice-versa. This behavior can be modelled as a PD
game where b is the benefit gained by fertilizing eggs
(assume sperms are free i.e. do not cost anything to
produce), c is the cost of producing eggs, p is the
probability that a defector will release eggs on its
turn without “defecting”. For p < 1, this qualifies as a
PD game and TFT can become a stable solution for
w > c/b. However, in nature, individuals seem to be
employing a forgiving variant of TFT like Generous
TFT, because pairs only reciprocate 80% of the time
and yet they stay together for long periods of time.

2. Reciprocal grooming in Impala: There is strong ev-
idence for reciprocal allogrooming in impala. The
benefits of grooming include reduction in tick load
and other ectoparasites. Costs include energy ex-
penditure, loss of vigilance, and loss of electrolytes
via saliva. The degree of reciprocity is astounding in
that there is almost a one-to-one correlation between
the number of grooming bouts delivered and those
received.

5.2.2 Group selection

The group selection theory of evolution of cooperation is
fairly simple. The notion of a group here refers to a “trait
group” i.e. a collection of individuals such that every in-
dividual feels the effect of every other individual. Group
selection can operate in cases where the cost to the in-
dividual performing the act (intra-group costs) is over-
compensated by the competitive advantage gained by the
group over other groups (inter-group benefit). The neces-
sary condition here is that groups with higher frequency of
cooperators should be able to outcompete those with lesser
number of cooperators. Note that the success of TFT can
be alternatively viewed as a case of group selection rather
than reciprocal altruism.
Examples of group-selected cooperation:

1. Raiding and warfare in chimpanzees: Chimpanzees
form “all-male” raiding groups and patrol the territo-
rial boundaries. These raiding parties avoid the use of
vocalizations and move stealthily. Raids involve the
killing of a small number of members of the raided
group and entail the capture of females. There is
strong within-group selection against individuals be-
ing part of these raiding groups (intra-group cost) and
strong selection for groups that perform such raids
(inter-group benefit)

2. Pleometrosis in Acromymex versicolor: Pleometro-
sis refers to a condition where colonies have multi-
ple foundresses (queens). In Acromymex versicolor
colonies, the queens forage after colony foundation.
The forager queen shares the food with the other

foundresses. Here the individual cost of foraging is
borne by the cooperative queen (intra-group cost),
which leads to a greater number of workers produced
by the colony, which in turn leads to an increase in
the probability of survival of the nest during the brood
raiding period (inter-group benefit).

5.2.3 By-product mutualism/pseudo-reciprocity

By-product mutualism refers to the situation where by the
act of performing bare minimum self-services, other indi-
viduals are benefited as a by-product. These are activities
that a solitary individual must do regardless of the pres-
ence of others, such as hunting. The hierarchy of payoffs
is CC > CD > DC > DD. The concept of pseudo-
reciprocity refers to the act of investing in by-product mu-
tualism. By-product mutualism and pseudo-reciprocity re-
duce the temptation to cheat that the individuals normally
face in a PD game.
Examples of cooperation selected by by-product mutual-
ism:

1. Cooperative territorial defense in pied wagtails: We
can aptly title the following game as “the owner’s
dilemma”. Wagtails defend riverside winter territo-
ries since they provide renewable resources that wash
up. They forage their territories periodically allowing
certain patches to renew their resources. Intruders
who land on such territories are sometimes tolerated
in exchange for shared territorial defense. However, it
is interesting that the choice of whether to tolerate or
evict an intruder depends on the status of the terri-
tory. During high food abundance, intruders are toler-
ated, whereas during periods of low food abundance,
intruders are chased off. Hence the owner’s dilemma.
This illustrates that the costs and benefits of engaging
in by-product mutualism can be condition-dependent
and dynamic.

2. Controlled experiments on blue jays: The experiment
is as follows, a pair of blue jays are given the option
to peck on two buttons; a cooperate button and a
defect button. The payoffs are controlled so that first,
the pair engages in a PD game. Subsequently, the
payoffs are altered so that the matrix corresponds to
a by-product mutualism or M matrix. Finally, the
payoffs are once again altered to bring the matrix back
to a PD matrix or P matrix. Regardless of whether
the birds could see each other or not, a consistent
pattern was observed, that the birds cooperate in the
M matrix but defect in the P matrix. Hence, their
cooperation can be best explained as a case of by-
product mutualism.

5.2.4 Challenging assumptions of established
game theoretic models:

Assumptions:

1. Partner choice is random
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2. Behavioral repertoire is discrete, with two alternative
options; cooperate or defect. There is no continuum.

Challenge:

1. Predator inspection in guppy: Guppy form small
predator inspections groups that break off from the
main school to approach and inspect the oncoming
danger. This has several benefits. Because of the
costs and benefits of predator inspection, Milinsky
(1987) suggested that inspectors were trapped in a
prisoner’s dilemma, where inspection equals cooper-
ation and not doing so equals defection. Controlled
experiments reveal that guppies, irrespective of their
own strategy (cooperator or defector), prefer cooper-
ative partners.

2. The extent of cooperation is signified by the distance
of approach to the perceived danger on the first at-
tempt. Thus, the extent of cooperation is a continu-
ous variable and whether an individual is a cooperator
or a defector is relative and specific to a pair. All co-
operators are not equal.
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