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Modelling Alternative Reproductive Strategies as Evolutionarily Stable
Strategies Using Game Theory and Adaptive Dynamics

C L Srinivas
July 25, 2025

Abstract

This report contains a detailed summary of the evolutionary game theory, trait based framework, adaptive dynamics and
theoretical evolution literature read and studied by me during the course of the internship. I also worked to extend my master’s
project; a theoretical model for the evolution of alternative reproductive tactics in Oecanthus henryi, by adapting the previous
discrete game model into a continuous trait based evolutionary game framework. Most of the literature read and summarized
here helped me directly in modeling the evolution of baffling behavior in O.henryi using a continuous trait based approach.
The first two papers discuss the parallels between trait based adaptive dynamics and evolutionary game theory and present
a framework for analysis of the stability properties of evolutionary fixed points using the second order derivatives of invasion
fitness with respect to resident strategy and the invading mutant strategy. It introduces the concept of Pairwise Invasibility
Plots (PIPs) and a graphical classification of them based on the properties of the evolutionary fixed point (termed evolutionarily
singular strategy or singular strategy). The third, book chapter presents a comprehensive review of the different flavors and
applications of trait based frameworks, its advantages and caveats. The fourth paper on the temperature response of fitness
in ectotherms provides a mathematical framework to partition the fitness effect of temperature into its different life history
components using the Euler-Lotka equation. This method can be used to model the fitness affect of baffling propensity through
its effects on the life history components of O.henryi males. The book chapter “Selection on One Locus” elucidates a simple
method for updating allele frequencies in an evolving population where fitness is a function of a single gene with two alleles. This
method can be used to update the frequency of traits in the model for the evolution of baffling as an alternative reproductive
tactic. Finally, I briefly describe my model, the functions used, assumptions involved and some preliminary analysis.

1 Introduction

This summer internship report documents the literature
reviewed, knowledge gained and skills applied in furthering
my model for the evolution of alternative reproductive tac-
tics in tree crickets (O.henryi). My previous modeling and
analysis attempts targeted at this problem were largely
based on the discrete, action-response game described in
Hurd 1995. The analysis greatly resembled those done
for classical economic games involving cost-benefit consid-
erations (refer here). There were a couple of drawbacks
to such an approach. Firstly, the discrete nature of the
game could not accurately represent the scope of the ac-
tual strategy space available in the real world. Secondly,
this approach did not lend itself to model evolution of
traits which requires analysis on large timescales based
on population level attributes like average lifetime fitness
as opposed nightly payoffs. During the initial parts of my
internship, I read key papers outlining the connections be-
tween evolutionary game theory and trait based adaptive
frameworks. This provided an understanding of how to
model evolutionary systems using functional trait based
models. The crux of which is that the fitness functions
are functions of the functional trait value and sometimes
(depending on the system) of the frequency of players with
a particular trait value. Section 2 encapsulates the sum-
mary of all the papers read. The mathematical framework
presented in Amarasekare and Savage 2012 was ultimately
used to model the effect of baffling (the trait of interest in
my model) on the lifetime fitness of calling males. The
fitness function derived for my model resembles that ob-
tained by Amarasekare and Savage 2012. The different

individual components in the fitness function, viz. the
instantaneous birth rate and mortality rate were mod-
eled based on hypothetical functions constructed based
on empirically observed data and regressions performed
on experimental data points. Non-linear averaging was
performed for a component function of the instantaneous
birth rate in order to calculate the mean population fit-
ness. Further analysis was done (is being done!) using this
mean population fitness.

2 Reading

2.1 Evolutionary Game Theory and Adaptive
Dynamics of Continuous Traits (McGill and
Brown 2007)

This review paper primarily concerns itself with the mod-
eling of biological evolution using evolutionarily continu-
ous games where strategies are represented by heritable
phenotypic traits. As opposed to classical games, in evo-
lutionary games, the players are allowed to replicate them-
selves in the next iteration. The magnitude of this repli-
cation is a function of the payoff obtained by the player in
the previous iteration. Hence, here the notion of payoff is
used to represent “fitness” in an evolutionary context. This
fitness (or payoff) is a function of the strategy employed
by the player, i.e. its “trait value” and the strategy(s) em-
ployed by the rest of the population (the co-players), i.e.
the trait values of the remaining population of players.
The trait dependent nature of the fitness function and the
heritability of this trait gives rise to adaptive dynam-
ics. The most basic definition of fitness in an evolutionary
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context is the per capita growth rate, i.e;

W (u, U,N) =
1

N

dN

dt
(1)

Here, W (u, U,N) denotes the fitness of a player employing
strategy u against a population of players all of whom use
U at a population size of N . The tri-variate fitness func-
tion invites analysis of the changes in fitness as a result of
changes in u, U , N and all possible combinations of these
variables. The condition for what is popularly considered
as an Evolutionarily Stable Strategy (ESS) (by Maynard
Smith and Price) can be written as follows;

W (u, U∗) < W (U∗, U∗) (2)

We can infer from 2, that the strategy U∗ is resistant to
invasion by any rare mutant u. This ESS strategy U∗ can
be computed by finding a maxima of the fitness function
W such that u = U = U∗;

∂

∂u
W (u, U∗) = 0 (3)

∂2

∂u2
W (u, U∗) < 0 (4)

However, invasion resistance (property guaranteed by con-
dition 2) only means that any population starting at U∗

can resist invasion by rare mutants, it does not shed any
light as to the fate of the system if initialized at say U∗+δ.
The following inequality gives the condition for this kind
of stability to perturbation/different initial starting point,
called “convergence stability” .

∂2

∂u2
W (u, U) +

∂2

∂u∂U
W (u, U) < 0 (5)

Note that condition 5 and 4 do not imply/restrict each
other. Hence, we can have all 4 possible combinations of
convergent stable and invasion resistant fixed points, i.e.
convergent stable and invasion resistant (evolutionary end
points, ESS), convergent stable but not invasion resistant
(evolutionary attractors), invasion resistant but not con-
vergent stable (evolutionary repellers) or non convergent
stable and not invasion resistant. Most interesting of these
possibilities, are a class of points that are both a fitness
minima and convergence stable (evolutionary attractors)
called “branching point” . As the term suggests, popu-
lations branch at these points into two separate species or
populations with distinct traits. Figure 1 shows a branch-
ing point in action. Branching points are evolutionary
attractors at long distances but repellers for populations
nearby. Hence, once the population is in the neighborhood
of a branching point, it may split into two populations that
evolve to occupy distinct nearby fitness peaks.

Figure 1: A branching point in action (McGill and Brown 2007).
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The fate of the system after passing through a branching
point maybe one of the following:

1. After branching, each population moves to a local ESS

2. One or both of the populations moves to another
branching point leading to subsequent branchings
that can lead to an adaptive radiation.

3. One population moves towards an ESS while the other
populations becomes extinct

4. Both populations become extinct

Are such branching points realistic? A major criticism
of the concept of such evolutionary branching points has
been the assumption of asexual reproduction. In sexually
reproducing organisms, recombination and hybridization
can cause the initially diverging sub-populations to inter-
mix and lead to offspring with intermediate trait values.
This process of homogenization of trait value between the
two sub-populations will eventually lead to the popula-
tion being stuck at the fitness minima hence preventing
branching. However, it is conceivable that under certain
circumstances, such kind of branching may occur even in
sexually reproducing organisms, that is if;

1. There is assortative mating based on the trait of
interest such that individuals choose to mate with
partners who share a similar trait value as them-
selves. This can lead to inbreeding within the two
sub-populations and cause them to move apart from
each other even more which further enhances the as-
sortative mating. This cycle eventually leads to sep-
aration of the population into two distinct groups.

2. There is a perceivable marker trait that is used for
sexual selection and is linked to the trait of interest
(Eg:- like a green beard effect with respect to altru-
ism). Then assortative mating can occur based on the
marker trait.

3. There is spatial separation between the individuals of
the two sub-populations as a result of their different
trait values. For example difference in trait value may
cause certain individuals to occupy slightly different
habitats, host plants etc. This spatial separation can
cause assortative mating as a consequence of proxim-
ity.

Hitherto, we have discussed only monomorphic ESS, as
suggested by our analysis of branching points, there maybe
a coalition of two or more strategies that are resistant to
further invasion by mutants. We can characterize such
scenarios by performing a straightforward extension of the
notation used for single strategy ESS. The population dy-
namics can be written as;

1

Ni

dNi

dt
= W (u, U1, U2, ..., Un, N1, N2, ...Nn) (6)

= W (u,U,N)

for u = Ui, where U and N are n length vectors rep-
resenting the resident strategies and their corresponding
population sizes. The conditions for an invasion resistant
coalition U* is given by an extension of the conditions 3
and 4;

∂

∂u
W (u,U,N) = 0 (7)

for u = Ui for each i

∂2

∂u2
W (u,U,N) < 0 (8)

for u = Ui for each i

W (u,U*,N*) ≤ W (Ui,U,N) = 0

The first order condition for convergence stability of U*
remains the same as condition 3, however, the second order
condition becomes quite difficult and untractable for coali-
tion size of more than 3. The idea is still the same that,
U* is convergent stable if the system returns to U* after
perturbation strategies S by an amount δi where S ⊆ U*,
|S| = m , i ∈ {1, 2, ...,m}.
Note that till now, we have ignored the effect of population
size N on the strategy dynamics. The rationale for this
is based on the assumption that population dynamics and
evolutionary processes occur on different timescales (the
latter occurring on very large timescales). This means
that we can assume evolution to be happening when the
population has achieved its equilibrium size N∗. But, in
cases of rapid evolution under extreme selection pressure
or in cases where there are no equilibrium points with re-
spect to population size, this assumption does not hold.
For example, in case of seasonally varying populations,
the population size may exhibit a cyclic nature. In order
to analytical solve such systems, we look at the long term
fitness of a particular strategy using Lyapunov exponents,
which are log geometric means of fitness;

Wlongterm(u, U,N) (9)

= [log|W (u, U1, N1)W (u, U2, N2)...W (u, UT , NT )|]
1
T

=
1

TΣilog|W (u, Ui, Ni)|

U∗ is a an ESS under non-equilibrium dynamics if;

Wlongterm(U∗, U∗) > Wlongterm(u, U∗)

∀u or for all nearby u

i.e if U∗ is a global or local maxima. Convergence stabil-
ity in non-equilibrium systems remains poorly understood.
Lastly, we can use the idea of Lyapunov exponents to con-
sider the concept of long term fitness in a stochastic and
fluctuating environment which represents the reality of life
more accurately;

Wstochastic(u, U, ε) = Eε{logW (u, U, ε)} (10)

=
1

TΣtlogW (u, U, et)

where Eε denotes taking the expectation with respect to
the probability distribution ε and et denotes the state of
the environment at time t. Convergence stability in these
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contexts remains largely unsolved.
Furthermore, trait based adaptive dynamics can also be
used to study coevolution of multiple species as a special
case of the multi-trait model. For a two species model we
have;

W1(u, U, V,N,M) (11)
&
W2(v, U, V,N,M)

The fitness functions subscripted by their species ID can
take very different forms when looking at an asymmetric
coevolution model as in a prey-predator system for exam-
ple.

2.2 Evolutionarily Singular Strategies and the
Adaptive Growth and Branching of the
Evolutionary Tree (Geritz et al. 1998)

This paper describes a mathematical model for the long
term phenotypic evolution of a single heritable continuous
trait. The authors generalize the concept of an ESS into
what they call an evolutionarily singular strategy. They
further describe the various kinds of singular strategies
based on 4 distinct, independent properties, v.i.z ESS sta-
bility (resistance to invasion by rare mutants), convergence
stability, ability to invade other populations when initially
rare itself and the possibility of protected dimorphisms oc-
curring in the neighborhood of the singular strategy. The
model assumes an asexually reproducing organism such
that parent and offspring trait value are same. Mutations
are rare and random. Evolution proceeds in small but dis-
crete steps. Fitness is defined as the long term exponential

growth rate of a phenotype in a given environment. Ex de-
notes the environment in a monomorphic population with
trait value x. r(x,Ex) denotes the population s long term
exponential growth rate. At the demographic attractor we
have;

r(x,Ex) = 0 (1)

Now, consider a mutant with strategy y emerging in this
population. As long as the mutant is rare, its effect on the
environment is negligible, thus we have;

sx(y) = r(y,Ex) (2)

If the mutations are sufficiently small so that x and y are
close enough, then we can write the following approxima-
tion for the mutant’s fitness;

sx(y) = sx(x) +D(x)(y − x) (3)

where D(x), the local fitness gradient is defined as,

D(x) =

[
∂sx(y)

∂y

]
y=x

(4)

Note that sx(x) = r(x,Ex) = 0 by definition. Hence, the
mutant’s fitness is determined only by the sign of the local
fitness gradient and (y−x). If the local fitness gradient is
positive, then mutants with a larger trait value can invade,
and if the local fitness gradient is negative then mutants
with a lesser trait value can invade. Thus the population
evolves until it reaches a point where the local fitness gra-
dient is zero. This is called an “evolutionarily singular
strategy” . A Pairwise Invasibility Plots (PIP) allows the
graphical analysis of the evolution of a monomorphic pop-
ulation, Figure 2 shows an example of a PIP.

Figure 2: An example of a pairwise invasibility plot. The x axis represents the resident strategy and the y axis represents the mutant’s
strategy. Thus, for each point (x, y) we may ask the question “Does the mutant invade?”. For the points along the principal diagonal i.e
y = x by definition the invasion rate sx(y) = r(y,Ex) = 0. If sx(y) > 0, then the answer is yes. If the answer is yes, then we mark it with
a “+” sign and it the answer is no, then we mark the point with a “-” sign. Thus the PIP shows the sign of the invasion rate sx(y) as a
function of x and y. The intersection of the diagonal with another line where sx(y) = 0 corresponds to the evolutionarily singular strategy
(Geritz et al. 1998).
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Close to a singular strategy there are only 8 possible
generic configurations of the pairwise invasibility plot near
the evolutionarily singular strategy which can be alge-
braically categorized based on the second order derivative
of sx(y) (Figure 3). Each of these configurations represents

a different evolutionary situation that can be interpreted
in terms of the ESS stability, convergence, ability of the
singular strategy to invade another population if initially
rare itself and the possibility of protected dimorphisms in
the neighborhood of the singular strategy.

Figure 3: A diagrammatic representation of the different possible local configurations of the PIP near the evolutionary singular strategy
(Geritz et al. 1998).

Table 1: Properties and their mathematical conditions

Property Condition

ESS Stability ∂2sx(y)
∂y2 < 0

Convergence Stability ∂2sx(y)
∂x2 > ∂2sx(y)

∂y2

Ability to Invade
[
∂2sx(y)

∂x2

]
y=x∗

> 0

Possibility of Nearby Dimorphism ∂2sx(y)
∂x2 + ∂2sx(y)

∂y2 > 0

Each of these possibilities can be described by a combina-
tion of inequalities of the second order derivatives of sx(y)
(Table 1)
A singular strategy that is both ESS stable and conver-
gence stable is termed “continuously stable strategy”
(CSS). Note that mutually invasible pairs of strategies
in the neighborhood of a CSS will eventually evolve into a

monomorphic population as mutants closet to the singular
strategy continuously invade. However, mutually invasible
pairs in the neighborhood of an ESS stable but not con-
vergent stable strategy will move apart further as mutants
farther from the singular strategy continuously invade (re-
fer Figure 4).
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Figure 4: (a)-(c) Depicts the invasion profile of a mutant for two mutually invasible strategies x1 and x2 in the neighborhood of a CSS
x∗. (d)-(f) Depicts the invasion profile of a mutant for two mutually invasible strategies x1 and x2 in the neighborhood of a convergent
stable but not ESS stable singular strategy x∗ (Geritz et al. 1998).

We can generalize this formalism to a population with ar-
bitrarily many phenotypes. Let Ex1,x2,...,xn

denote the
environment on a population with strategies x1, x2..., xn

at its demographic attractor. Then;

r(xi, Ex1,x2,...,xn
) = 0 (5)

∀xi where r(xi, Ex1,x2,...,xn
) denotes the long term expo-

nential growth rate of the xith phenotype. The invasion
rate of a rare mutant y in this population is therefore;

sx1,x2,...,xn
(y) = r(y,Ex1,x2,...,xn

) (6)

With small mutations the local fitness gradient with re-
spect to the xith strategy is,

Di(x1, x2, ...xn) =

[
∂sx1,x2,...,xn(y)

∂y

]
y=xi

(7)

Combination of strategies for which Di(x1, x2, ...xn) is zero
lie on an n-1 dimensional manifold that we call an xi iso-
cline. Along this isocline, there is no directional selection
in the xi strategy. The point of intersection of all isoclines,
(x∗

1, x
∗
2, ..., x

∗
n) is an evolutionarily stable coalition. A

singular coalition is evolutionarily stable if and only if all
its constituent strategies are ESS, that is;[

∂2sx1,x2,...xn(y)

∂y2

]
y=x∗

i ,xj=x∗
j∀j

< 0 (8)

Mutual invasibility of a mutant and the resident strategy
is possible near a singular coalition under the following
condition; [

∂2sx1,x2,...,xn
(y)

∂x2
i

]
y=x∗

i ,xj=x∗
j∀j

(9)

<

−
[
∂2sx1,x2,...,xn

(y)

∂y2

]
y=x∗

i ,xj=x∗
j∀j

Note that mutual invasibility has no long term significance
if the singular strategy is ESS. A singular coalition that is
both convergent stable and ESS is the long term endpoint
of the the evolutionary process. A convergent stable sin-
gular coalition lacking ESS stability can lead to branching
if there are mutually invasible strategies in the neighbor-
hood.
As a specific example to demonstrate evolutionary dynam-
ics and branching in a monomorphic population, let us
consider Levene’s (1953) ‘soft selection’ model with con-
tinuous strategies. Consider a population of an organism
with discrete, non-overlapping generations with strategies
x1, x2, ...xn residing in a homogeneous environment with
m different patches. Each patch has a carrying capacity
of Ki, i ∈ {1, 2, ...,m}. The total population size in each
generation is constant, i.e.

n∑
i=1

Ni =

m∑
j=1

Kj (10)

where Ni denotes the total number of individuals using
strategy xi across all patches. In each generation, the off-
spring disperse into the different patches with the number
of juveniles entering a patch being proportional to the fre-
quency of that strategy amongst the dispersing offspring.
Under the assumption that all individuals have equal fe-
cundity irrespective of strategy or patch, the number of
juveniles landing on a particular patch is proportional to
Ni. Within a patch, juveniles first undergo a period of
frequency independent selection after which they experi-
ence a non-selective contest, during which the available
space in the patch is portioned off randomly among the
survivors. The fraction of space allocated to individuals
using strategy xi in the jth patch is;

fj(xi)Ni/

n∑
h=1

fj(xh)Nh (11)
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where fj(xi) is the pre-competitive survival probability of
an individual using strategy xi in patch j. Thus the total
number of xi users in the next generation (summed over
all patches) is;

N ′
i =

m∑
j=1

(
Kjfj(xi)Ni∑n
h=1 fj(xh)Nh

)
(12)

At equilibrium, N ′
i = Ni ∀ i. Consider a rare mutant

strategy y invades this population at equilibrium. A first
order approximation for the number of mutants in succes-
sive years is;

N ′
mut =

m∑
j=1

(
Kjfj(y)Nmut∑n
h=1 fj(xh)N̂h

)
(13)

where N̂h denotes the equilibrium number of xh strategy
users. Thus the mutant’s exponential growth rate can be

written as;

sx1,...,xn(y) = (14)

log
N ′

mut

Nmut

=log

m∑
j=1

(
Kjfj(y)/

n∑
h=1

fj(xh)N̂h

)

Let us consider a simple case with exactly three patches
each with the same carrying capacity i.e. K1 = K2 = K3.
We use the following bell curve to represent the pre-
competitive survival probabilities of the different strate-
gies;

fj(x) = α exp

(
− (x− µj)

2

2σ2

)
(15)

where µ1 = −d, µ2 = 0 and µ3 = d for some value of d.
Based on the above assumptions, there is a unique evolu-
tionarily singular strategy at x∗ = 0 that is convergence
and ESS stable, that can invaded other populations if ini-
tially rare and in the neighborhood of which protected
dimorphisms are possible. The properties of the singu-
lar strategy vary as a function of d/σ. This property is
depicted in the Figure (5).

Figure 5: A diagram showing the bifurcation plot with d/σ as the bifurcation parameter for (a) the monomorphic singular strategy, (b)
Dimorphic singular coalition and (c) Trimorphic singular coalition. Thick lines correspond to ESS stability and thin lines correspond to a
lack of ESS stability (Geritz et al. 1998).
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2.3 Trait Based Ecology and Eco-Evolutionary
Theory (Klausmeier, Kremer, and Koffel
2020)

This book chapter provides a comprehensive overview
of trait based frameworks and their applications to eco-
evolutionary studies. It discusses the benefits and assump-
tions involved in trait based approaches and how different
approaches are related to each other. Traits are defined as
measurable properties of living organisms; functional traits
are those that affect the performance or fitness of an or-
ganisms. For the major part, trait based approaches are
focused on functional traits and the assumption that or-
ganisms and populations can be viewed merely as entities
possessing a certain value of this “trait” of interest. This
allows modelers to represent individuals and populations
using trait values and trait value averages. Optimality the-
ory tries to explain the evolution of trait values based on
the concept of an “optimal” trait value given a constant
environment. The drawback to this approach is that it
assumes the fitness of a particular trait depends only on
the external, constant factors and does not account for
the traits/strategies used by other individuals in the pop-
ulation, AKA frequency dependence. Game theory was a
designed to analyze such scenarios initially in economics,
and was later imported to evolutionary biology. In this

framework, the fitness of a particular strategy depends on
the strategic composition of the rest of the population as
well. The notion of an optimal strategy is replaced by that
of an evolutionary stable strategy, a strategy that can-
not be improved upon once universally adopted. Amongst
many trait based approaches that emerged in the late 19th
century, two independent groups– one American (Brown
and Vincent 1987) and European (Metz et al.1996) pro-
posed a trait based theoretical framework that allows for
the emergence of community structure, termed adaptive
dynamics. It combines ideas from evolutionary game the-
ory and community ecology. These frameworks hinge on
the fact that payoffs can be identified as Darwinian fitness
which is described as the per capita growth rate in com-
munity ecological models.
Community assembly theory is a purely ecological frame-
work where different species are repeatedly introduced into
a local community from a finite or infinite regional species
pool. The different outcomes of such a process include;
(a) an un-invasible community, (b) recurrent assembly cy-
cle continues or (c) Community assembly continues in-
definitely along different trajectories. Even though com-
munity assembly theory has a lot in common with the
adaptive dynamics framework, the two literatures have re-
mained largely separate.

Figure 6: Zero Invasion Plots (a) two environmental factors, (b) two traits (c) one environmental factor and one trait. Shaded region
indicates positive fitness.

Figure 6 depicts Zero Invasion Plots for a density inde-
pendent system where per capita growth rate is described
by

dNi

dt
= riNi

where ri(x̄i, Ē, ) depends on the trait and the state of
the environment. Figure 6(b) shows a hypothetical sce-
nario where, in a fixed environment, positive growth oc-
curs only in certain combinations of both traits. For a
given trait value, a horizontal slice through the shaded
region in Figure 6(c) give the fundamental niche. And

a vertical slice through a fixed environment factor value
gives the fundamental community; species with trait val-
ues outside the fundamental community range cannot per-
sist. The simplest density dependent model might be the
Lotka-Volterra model which can be written as;{

dN1

dt = (r1 − α11N1 − α12N2)N1 = g1N1

dN2

dt = (r2 − α21N1 − α22N2)N2 = g2N2
(1)

where N1, N2 are the populations of two species, ri are
maximum growth rates αii and αij are intra and inter
specific competition coefficients respectively. The possible
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outcomes of such a system are; (a) species 1 out-competes
species 2, (b) species 2 out-competes species 1, (c) species
1 and species 2 coexist, (d) species 1 or species 2 excludes
the other based on initial conditions or (e) species 1 and
species 2 neutrally coexist.
Invasion analysis is a powerful tool to analyze the stability
of multi-species or multi-strategy population. The idea is
to ask whether a particular population when introduced
in sufficiently low numbers (invader) into a monomorphic
population of another (the resident) has a positive per
capita growth rate or not. A positive per-capita growth
rate implies that invasion is possible. The invader popu-
lation/strategy is assumed to be rare enough such that it
faces no density dependent inhibition of growth and that it
does not affect the surrounding environmental state. This
density independent growth rate of the invader is termed
its invasion fitness,ginv(Eres). The advantage of invasion
analysis is that it is easier than trying to solve for the co-
existence attractor and characterize its stability.
The following are four steps to set up a trait based model.

1. Identify groups of population that are functionally
similar and place them into a guild. For example,
predators and prey species might form two separate
guilds. Let ς denote the number of guilds.

2. Let ∃ NG populations in guild G, indexed by sub-
scripts. Any terms that signify interaction between
populations or between populations and the environ-
ment must be replaced by a sum over all populations.

3. Make model parameters functions of traits. Thus the
model consists of a set of differential equations of the
form;

dNG,i

dt
= gG(xG,i, E⃗(N⃗ , x⃗))NG,i

where x⃗ = (x⃗1, x⃗2, ..., x⃗ς), x⃗G = (xG,1, xG,2, ..., xG,NG
),

N⃗ = (N⃗1, N⃗2, ...N⃗ς) and N⃗G = (NG,1, NG,2, ..., NG,NG).

4. The final step in setting up a trait based model is to
define the source of variation. In adaptive dynamics,
this is assumed to be small infrequent mutations.

The analysis of such trait based models is covered in sec-
tion 2.2. Other insights come from studying how the
properties of Evolutionarily Singular Communities (ESC)
change as a function of environmental parameters. An ef-
ficient way to compute bifurcation diagrams using an en-
vironmental factor z as the bifurcation parameter is given
by Klausmeier and Kremer 2017. Figure 8 shows the bi-
furcation diagram for an ESC as function of a bifurcation
parameter z.
Apart from stable fixed points, in recent years there has
been discovery of multiple other possible outcomes of eco-
evolutionary processes such as limit cycles, evolutionary
suicide, branching-extinction evolutionary cycles and al-
ternative evolutionary stable states. In systems that fall
into limit cycles, population densities and traits both fluc-
tuate over time in a periodic fashion. Evolutionary suicide

or more generally “Tragedy of the Commons” (TOC) oc-
curs when adaptive evolution leads to progressive decrease
in gross population abundance culminating in extinction.
Branching-extinction cycles occur when one of the two
sub-populations at a branching point goes extinct and the
extant population falls back into the branching point caus-
ing this cycle to repeat itself indefinitely. Alternative sta-
ble states can occur in the form of alternate ESS/ESCs
where the initial conditions will determine which stable
state is achieved.
There are other trait based frameworks, each of which dif-
fer from the other on the basis of the degree to which
biological details are abstracted, the level of biological or-
ganization at which variances involved are manifested, the
source of new phenotypes and the heritability in the trait
variations. Despite these differences, they can reach sim-
ilar conclusions about long term outcome of community
assembly/evolution as depicted in Figure 7. We can try
to understand how these different frameworks lead to sim-
ilar outcomes by considering the oligomorphic dynamics
framework (Sasaki and Dieckmann 2011). The framework
tracks the three moments of the population, the zeroth
moment which is the population size, the first moment
which is the mean trait and the second moment which is
the trait variance. These are given by the following ex-
pressions respectively;

Ni =

∫
ni(x)dx

x̄i =

∫
x.ni(x)dx

Ni

Vi =

∫
(x− x̄i)

2ni(x)dx

Ni

In the absence of immigration and mutation, the dynamics
of each population is given by;

dNi

dt
=

∫
g(x)ni(x)dx (2)

≈ g(x̄i)Ni +
1

2
Vi

∂2g(x)

∂x2

∣∣∣∣∣
x=x̄i

dx̄i

dt
=

1

Ni

∫
x.g(x)ni(x)dx− x̄i

Ni

∫
g(x)ni(x)dx (3)

≈ Vi
∂g(x)

∂x

∣∣∣∣∣
x=x̄i

dVi

dt
=

1

Ni

∫
(x− x̄i)g(x)ni(x)dx (4)

− Vi

Ni

∫
g(x)ni(x)dx

≈ V 2
i

∂2g(x)

∂x2

∣∣∣∣∣
x=x̄i

Assuming small trait variance, each extant species at equi-
librium is characterized by g(x̄i) = 0 (Equation 3) and
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∂g
∂x = 0 (Equation 4) −− the same conditions for an evo-
lutionary equilibrium in adaptive dynamics (section 2.2).
The condition for convergence stability matches the linear
stability of Equation 4 and Equation ?? shows that the
trait variance Vi → 0 if ∂2g

∂x2 < 0 −− the same condition
for evolutionary stability as in adaptive dynamics.
There are scenarios where one can expect these different
frameworks to generate distinct outcomes:

1. In case of the presence of multiple local ESS but not
a global ESS.

2. In case ecological quantitative genetics or oligomor-
phic dynamics models are not initialized with suffi-
cient number of species.

3. In case of the the absence of fixed points, the details
of the emergence of new strategies will determine the
non-equilibrium dynamics.

4. In case of high immigration or mutation rates.

Hitherto we saw the analysis of trait based systems under
the simplistic assumption of spatial and temporal homo-
geneity. However, the factors that affect an invading mu-
tant’s fitness (like external environment, resident popula-
tion composition etc.) may fluctuate over time. In order
to deal with such systems, we need to calculate the time-
averaged invasion rates ḡinv. All the methods discussed
in section 2.2 can then be applied to ḡinv. In the case of
an unstructured population facing periodic forcing, we can
define ḡinv(x0; E⃗(t)) as;

ḡinv =
1

τ

∫ τ

0

ginv

(
x0; E⃗(t)

)
dt (5)

note that;
∂ḡinv
∂x0

=
1

τ

∫
∂ginv
∂x0

(6)

In the case of structured populations undergoing fluctu-
ating environments, one needs to calculate Floquet expo-
nents or more generally the Lyapunov exponents.
Spatially non-homogeneous systems are modeled as a col-
lection of discrete patches and their collective dynamics
are modeled using Leslie matrices;

dN⃗i

dt
=
(
G
(
xi;E(x⃗, N⃗)

)
+D(xi)

)
N⃗i (7)

where N⃗i is a vector of the abundances of the population
i in different patches, G is a diagonal matrix governing
within patch dynamics and D is a matrix encoding disper-
sal among patches. Alternatively, similar modeling can be
done across continuous space using reaction-diffusion sys-
tems which can be represented using differential equations
of the form;

∂Ni

∂t
= g

(
z, xi;E

(
x⃗(z), N⃗(z)

))
Ni + d(xi)

∂2Ni

∂z2
(8)

where z denotes the spatial dimension, g determines the
local dynamics and the last term allows for dispersal.
In conclusion one of the biggest advantages to trait based
approaches is that (a) they can be integrated a number
of theoretical frameworks, (b) they allow us to analyze
complex interactions in a simplistic functional way with-
out dealing with the mechanistic complexities of genetics
and inheritance and (c) they allow us to make quantitative
predictions which can be empirically tested/verified.

Figure 7: The evolution of a trait based Lotka-Volterra model under 5 different frameworks (Klausmeier, Kremer, and Koffel 2020).
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Figure 8: A bifurcation diagram showing equilibrium traits (a), population size (b), PIPs (c-e) and invasion profiles (f-i) (Klausmeier,
Kremer, and Koffel 2020)
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2.4 A Framework for Elucidating the Temper-
ature Dependence of Fitness (Amarasekare
and Savage 2012)

This paper presents a mathematical framework to par-
tition the temperature dependent fitness response of ec-
totherms into components of fecundity, development and
mortality. Such a partitioning is crucial to understand
the temperature dependent responses and extinction risks
of ectothermic organisms, especially for those organism
whose optimum temperature Topt is closer to the maxi-
mum viable temperature Tmax. This is because small in-
crements in global temperatures will adversely affect well
adapted species of the former type. Age structured popu-
lation dynamics provide a way to investigate the temper-
ature dependence of rm as a function of the temperature
response of underlying life-history traits. Let B(t) be the
instantaneous birth rate of the population.lx be the frac-
tion of individuals that survive until age x (survivorship)
and bx be the age specific fecundity of the individual; then
we can write;

B(t) =

∫ t

0

B(t− x)lxbxdx (1)

Substituting B(t) = Qermt as a candidate solution, where
rm is the growth rate of the population, in 1 we have;

Qert =

∫ t

0

Qerm(t−x)lxbxdx (2)

=⇒ 1 =

∫ t

0

e−rmxlxbxdx

Assuming α is the age of first reproduction, the expected
reproductive success of a newborn is given by;∫ ∞

α

e−rmxlxbxdx = 1 (3)

Consider the common case where fecundity declines with
age; that is,

bx =

{
0 for x < α

bαpeak
f(x− αpeak) for x ≥ α

(4)

where αpeak is the age at which fecundity is maximum.
The function f(x − α) is unimodal and by definition has
a peak at f(0). The survivorship function follows an ex-
ponential decay after reaching age of reproduction such
that;

lx = lαe
−d(x−α) (5)

where d is the age independent instantaneous adult mor-
tality rate. Then equation 3 becomes;

bαpeak
lαe

dα (6)

×
∫ ∞

α

f(x− αpeak).e
−(d+rm)xdx

= 1

substituting y = x− αpeak,

bαpeak
lαe

−d(αpeak−α).e−rmαpeak (7)

×
∫ ∞

α−αpeak

f(y).e−(d+rm)ydy = 1

Since the function f(y) is sharply peaked at f(0) = 1, we
will approximate the above integral by approximating the
value of f(y) near the peak and performing integration
over the remaining exponential term, giving us;

bαpeak
lαe

−rmα − (d+ rm) ≈ 0 (8)

We can use lα = exp−
∫ α

0
d(x)dx = e−d̄α where d̄ is the

average juvenile mortality rate. Then equation 8 becomes;

bαpeak
e−(d̄+rm)α − (d+ rm) ≈ 0 (9)

Implementing explicit temperature dependence of
bαpeak

, d, d̄ and α we have;

bαpeak
(T )e−[d̄(T )+rm(T )]α(T ) (10)

−(d(T ) + rm(T )) ≈ 0

Solving equation 10 for an analytical expression of rm(T )
we get;

rm(T ) = −d(T ) +
1

α(T )
(11)

×W
{
bαpeak

(T )α(T )e(d(T )−d̄(T ))α(T )
}

where W is the principal branch of the Lambert W func-
tion or the product logarithm. Incorporating a Gaus-
sian function for fecundity and exponential (Boltzmann-
Arrhenius) function for development and mortality we
have;

rm(T ) = −dTR
eAdTD +

1

αTR
eAαTD

×W

(
b̄TR

αTR
eAαTD−

(T−Toptb̄
)2

2s2

+ αTR
eAαTD

[
dTR

eAdTD − d̄TR
eAd̄TD

])
(12)

Where TD = [ 1
TR

− 1
T ], dTR

is the mortality rate at a ref-
erence temperature, Ad is the Arrhenius constant, 1

αTR
is

the development rate at reference temperature TR, ¯bTR
is

the per capita fecundity at reference temperature Toptb̄ , s
is the standard deviation of the Gaussian function describ-
ing fecundity and ¯dTR

is the juvenile mortality rate at the
reference temperature TR.
The first term of equation 12 is the negative effect of tem-
perature response due to adult mortality. The second term
which is positive for all temperature values combines the
exponential, Gaussian and Gompertz-like functions arising
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out of the temperature response of development (exponen-
tial), fecundity (Gaussian) and the interaction between fe-
cundity and development (Gompertz-like). Hence the sign
of rm(T ) is decided by which of the two terms dominate.

This is depicted in figure 9. Figure 11 depicts the effect of
temperature dependent development rate on the symme-
try of rm(T ).

Figure 9: Grey line depicts the negative term of equation 12 and the black line depicts the first, positive term. In the case of (c) and (d)
s = 2.5 and in (e) and (f) s = 4.8 (Amarasekare and Savage 2012).

Figure 10: Table depicting the measured parameter values of the temperature response for a tropical, mediterranean and temperate
hemipteran. N indicates sample size (number of temperatures in which these values were measured)(Amarasekare and Savage 2012).
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Figure 11: Figure depicting how temperature response to development (Aα) affects the symmetry of rm(T ) (Amarasekare and Savage
2012).

Figure 12: Figure depicts how s, the width of temperature response of fitness affects rm(T ) (Amarasekare and Savage 2012).
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A wider temperature response for reproduction causes Topt

to move closer to Tmax whereas a narrower response de-
creases the left skew (figure 12). Figure 13 shows data
points in comparison with the predicted rm(T ) for temper-
ate, tropical and Mediterranean hemipteran species (10).

In conclusion, partitioning of the temperature response of
fitness into its different components highlights how differ-
ential effects of temperature on life-history traits such as
fecundity, development, and survivorship can affect overall
fitness.

Figure 13: Data points overlayed on top of predicted rm(T ) functions for a Tropical, Mediterranean and a Temperate hemipteran species
(Amarasekare and Savage 2012).

2.5 Selection on One Locus (Rice 2004)

My interest in this chapter from the book “Evolutionary
Theory: Mathematical and Conceptual Foundations” by
Sean H Rice was to understand the way allele frequencies
were updated after every generation in a fitness depen-
dent manner. Absolute fitness is the expected number
of surviving offspring produced by a parent with a par-
ticular genotype. Relative fitness is just absolute fitness
scaled in some way. Let us consider a system with 2 alleles
at a single locus, namely A1, and A2. Let wij denote the
average fitness of the genotype AiAj . Let the frequency
of allele A1 be p. Then we have,

Nt+1 = p2Ntw11 + 2p(1− p)Ntw12 + (1− p)2Ntw22 (1)

Rewriting this as;
Nt+1 = w̄Nt

where:

w̄ = p2w11 + 2p(1− p)w12 + (1− p)2w22 (2)

The term w̄ is called the mean population fitness,
which is just the sum of the fitness values of each genotype
in the population scaled by their respective frequencies.
This mean population fitness can be related to the instan-
taneous per capita growth rate used in continuous growth

as follows;

Nt = Noe
rt (3)

=⇒ Nt+1 = Nte
r

=⇒ Ntw̄ = Nte
r

=⇒ r = ln(w̄)

To know how the mean population fitness changes with
change in p, we can differentiate equation 2,

dw̄

dp
= 2pw11 + 2w12 − 4pw12 − 2w22 + 2pw22 (4)

= 2 [pw11 + (1− p)w12]− 2 [pw12 + (1− p)w22]

Note that here we assume that the values wij are them-
selves not functions of p, that is, we assume frequency
independent fitness. We can also calculate the fitness
of an allele as the sum of the fitness of the genotypes in
which the allele is present weighted by the respective prob-
abilities of the allele being found in that genotype. We will
use w∗

i to denote the fitness of allele Ai. Thus we have;

w∗
1 = pw11 + (1− p)w12 (5)

w∗
2 = pw12 + (1− p)w22

Thus, w̄ becomes,

w̄ = pw∗
1 + (1− p)w∗

2 (6)
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From equation 4 and equation 5 we have;

dw̄

dp
= 2(w∗

1 − w∗
2) (7)

Let ni be the actual number of Ai alleles in generation t
and nT is the total number of alleles. Then;

pt+1 =
n1w

∗
1

nT w̄
=

ptw
∗
1

w̄
(8)

Thus, we can scale fitness values any way we want as any
scaling factor applied to all fitness values appears in both
the numerator and denominator and thus cancels out.

3 Modeling

Here I further develop and extend the model I had previ-
ously worked on during the first year of my master’s thesis
(refer here). During the course of this summer, I have tried
to adapt my existing discrete game theoretic model into
a continuous trait based evolutionary model. The follow-
ing are the major simplifying assumptions involved in this
approach;

1. There exists a trait that controls the baffling thresh-
old. We will refer to this trait henceforth using ‘x’.
Baffling threshold refers to the loudness below which
a male will choose to baffle and above which a male
does not choose to baffle.

2. x is sex limited and female imprinted, so that the
value of x in male offspring is determined solely by
the father’s trait value.

3. The active acoustic volumes of signaling males does
not overlap, that is, males are significantly scarcely
distributed in the environment such that their calls
do not influence one another.

4. All males are uniform with respect to body size OR
females don’t show preference based on male body
size.

5. All females have identical lifetime fecundity ϕ. ϕ may
be a function of the environmental resource availabil-
ity R, i.e. ϕ(R). Lifetime fecundity is defined as the
total number of eggs laid by a female during her life-
time.

6. 50% of all offspring are males and 50% are females.

7. Females have a fixed, uniform mortality rate.

8. Instantaneous adult mortality rate of males is influ-
enced by their history of calling/baffling.

9. All juveniles have identical development times.

10. Male fecundity is not affected by age. Male fecundity
is defined as the rate of sperm transfer.

11. The environmental resource concentration is constant
and the energy status of males inhabiting this envi-
ronment follows a normal distribution such that

z ∈ N(z̄, σ)

where σ denotes the standard deviation of the distri-
bution.

The total number of births in a population at any time t
denoted by B(t) is given by

B(t) =

∫ t

0

B(t− a)l(a)b(p(x)) da (1)

where p(x) denotes the baffling propensity, l(a) denotes
the age dependent survivorship and b denotes the instan-
taneous birth rate (analogous to age independent male fe-
cundity). Plugging a candidate solution B(t) = Qert in
equation 1 we have,

1 =

∫ t

0

e−ral(a)b(p(x)) da (2)

Using equation 2, we can express the lifetime fecundity of
a newborn male as;

1 =

∫ ∞

α

e−ral(a)b(p(x)) da (3)

where α is the age of first reproduction. Substituting
l(a) = lαe

−d(p(x))(a−α) in equation 3, we have;

lαb(p(x))

∫ ∞

α

e−ra.e−d(p(x))(a−α) da = 1

=⇒ lαb(p(x))

∫ ∞

α

e−a(r+d(p(x))).eαd da = 1

=⇒ lαb(p(x))e
αd

[
− 1

r + d(p(x))
e−a(r+d(p(x)))

]∞
α

=⇒ lαb(p(x))e
αd

(
e−α(r+d(p(x)))

r + d(p(x))

)
= 1

=⇒ lαb(p(x))e
αd(p(x)).e−α(r+d(p(x))) = r + d(p(x)) (4)

Substituting lα = e−d̄α in equation 4, where d̄ is the juve-
nile mortality rate, we have;

b(p(x))e−d̄α.e−αr − (r + d(p(x))) = 0

b(p(x))e−α(d̄+r) − (r + d(p(x))) = 0 (5)

Considering the explicit dependence of r on p(x) we can
write;

r(p(x)) = b(p(x))e−αd̄e−αr(p(x)) − d(p(x))

Substituting y = r(p(x)), we have;

y = −d(p(x)) + b(p(x))e−αd̄.e−αy

(6)
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Using the general solution for p(x) = a+ becp(x) given by
p(x) = a− 1

cW (−bce2c) and equation 5, we have;

y = −d(p(x)) +
1

α
W
(
b(p(x))e−αd̄αed(p(x))α

)
=⇒ r(p(x)) = −d(p(x)) +

1

α
W
(
b(p(x))e−αd̄αed(p(x))α

)
=⇒ r(p(x)) = −d(p(x)) +

1

α
W
(
αb(p(x))eα(d(p(x))−d̄)

)
(7)

Equation 7 gives an expression to calculate the fitness of a
male where d(p(x)) describes how the instantaneous mor-
tality rate of a male increases as baffling propensity in-
creases, W is the principal branch of the Lambert W Func-
tion and b(p(x)) is the instantaneous egg fertilization rate
(analogous to instantaneous birth rate) as a function of
baffling propensity p(x) and the intrinsic energy status z.
The function b(p(x)) is constructed as follows;

b(p(x)) = active acoustic volume
× female density per unit area
× rate of attraction of females
× mating duration per female (8)
× effective sperms transferred per unit time

Here, effective sperms transferred denotes the number of
eggs fertilized by the sperms transferred. Since the num-
ber of sperms are much much greater than the number of
eggs fertilized, we have to somehow scale down the number
of actual sperms transferred to get an idea of how many
eggs are fertilized by those many sperms. The functions
used to approximate these quantities are provided in ta-
ble 2. The function for audience is based on the spherical
spreading of sound in 2 dimensions, function for attraction
is hypothesized based on qualitative observation of female
phonotaxis rate to playback sounds of different loudness
(Deb, Modak, and Balakrishnan 2020), function for Sper-
matophore Attachment Duration (SPAD) was obtained by
performing regression on supplementary data from Deb,
Modak, and Balakrishnan 2020 and the function for Ef-
fective Sperm Transfer Function is adapted and modified
from the same paper. The graphical plots of these func-
tions is depicted in figure 14. Substituting 8 in equation

7 and assuming a simple linear function d(p(x)) = m.p(x)
we can get an expression for r(p(x)) (refer figure 15). No-
tice that r(p(x)) < 0 even when the instantaneous birth
rate b(p(x)) and the instantaneous death rate d(p(x)) are
equal. This is not the case though when a juvenile phase
is not considered, i.e. α = 0. It is important to note
that figure 14 and 15 depict functions computed on the
average intrinsic energy state of a population of males z̄.
It is not necessarily the same as the average of each of
those functions computed for every individual in the pop-
ulation. The later, in fact, gives the true mean popu-
lation growth rate. However, since the later endeavor
entails the use of not so simple mathematics to convolute
these functions, one may be tempted to check if the for-
mer is a good enough approximation for the later. Figure
16 depicts the average of these functions within 95% CI
overlayed with the same functions computed on z̄. As we
can see, for small variation in z and a comparatively larger
variation in Attraction, this approximation holds well.
For greater robustness we can obtain an expression for
average attraction by convoluting the attraction function
with the normal distribution for z ∈ N(z̄, σ). What results
is a rather large expression;

average attraction =
1

σ

√
s2+2σ2

σ2s2

(9)

exp

−

 s2 + 2σ2

2σ2s2

 z̄2s2 + 2σ2(X − 12px)2

2σ2 + s2
−

 z̄s2 + 2σ2(X − 12px)

2σ2 + s2

2

Using equation 9, we can see that r(p(x), z) is better ap-
proximated by r(p(x), z̄, σ) when σ ≤ 1 (figure 17). Now,
in an evolutionary context, often what is more useful than
the absolute rate of growth is the relative fitness of one
phenotype with respect to another. We can therefore con-
sider the relative fitness of a mutant with trait value y in
a resident population of x users as;

sx(y) = r(p(y))− r(p(x)) (10)

Thus sx(y) also gives the invasion rate of a mutant y in a
resident population of x users. We can construct Pairwise
Invasibility Plots (PIPs) using sx(y) for different values of
x0 and z̄ (figure 18).

Table 2: Functions and their expressions. z is the intrinsic energy status, k, a0, x0, σ and c0 are model parameters that can be tuned
using empirical data.

Function Expression

Audience
k

(
π2

z−45
3 +p(x)π2

z+12−45
3

)
10000

Attraction e
(x0−z−12p(x))2

s2

SPAD 1974
1+e−(0.105832(z+12p(x))−5.67869)

ESTF (−0.0018( spad
60 )2+12.468( spad

60 ))
c0

18

https://en.wikipedia.org/wiki/Lambert_W_function
https://en.wikipedia.org/wiki/Lambert_W_function


(a) (b) (c)

(d) (e)

Figure 14: (a)-(e) Audience, Attraction, Spad, Estf and b(p(x)). Parameters used: - z = 50, k = 0.7, x0 = 56, σ = 2 a0 = 1, c0 = 1.5

Figure 15: Plot of r(p(x)) along with its negative and positive components and b(p(x)). Parameters used: - m = 0.5, α = 1 and d̄ = 0.7
(other parameters same as in figure 14)
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Figure 16: Plots showing the value of f(z) with 95% CI and f(z̄). Standard deviation in z, σ = 0.8, standard deviation in Attraction
s = 7

Figure 17: Plot showing the better approximated function r(p(x), z̄, σ) (blue) using equation 9 alongside the earlier approximation
r(p(x), z̄) (red) and r(p(x), z) (dotted line). Values of σ and s are 1 and 5 respectively.
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(a) x0 = 55, z̄ = 52 (b) x0 = 60, z̄ = 52

(c) x0 = 55, z̄ = 52 (d) x0 = 60, z̄ = 52

Figure 18: Figure depicting Pairwise Invasibility Plots for different values of x0 and z̄. Figures (c) and (d) depict the feasible region
within figures (a) and (d).

Note that we have to be careful when interpreting these
PIPs since not for all parameter values r(p(x)) is non-
negative. A negative value of r(p(x)) would mean that
the population is headed towards extinction in the long
term and hence is not viable. Thus, it is important to an-
alyze the PIP within the “feasible region” of trait values

for a given parameter combination to ensure that all the
populations/trait values considered have a non-negative
intrinsic growth rate. Additionally, we can also look at
the size of this feasible range as a function of the different
parameter values (figure 19).

(a) (b)

Figure 19: Figure depicting color maps of feasible region range as a function of x0 (corresponding to X) and z̄. The color maps change
as we change the other model parameter like k,m, s etc.
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